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A B S T R A C T   

The evaluation of joint toxicity of mixtures is an important topic in toxicology. Previous studies have found that 
the parameter k∙ECx of concentration response curves (CRCs) can be used to assess the applicability of con-
centration addition model (CA). This study further assesses the predictability of k∙ECx on the joint toxicity 
evaluation. The toxicities of the twelve environmental pollutants, as well as those of binary mixtures with an 
equivalent-effect concentration ratio, to Vibrio fischeri were determined by using the microplate toxicity analysis. 
The toxicity evaluation of mixtures was conducted by CA and independent action model (IA). The relationship 
between the joint toxicity (measured by the relative model deviation ratio (rMDR)) and the k∙ECx was studied. 
The results shows that the k∙ECx could reflect the shape of CRCs in the whole concentration range. According to 
the IA and CA, 65% of the mixtures produce strong antagonistic or synergistic effect due to the significant dif-
ference of k∙ECx. The percentage of the relative difference of k∙ECx of components and the rMDRx can be fitted 
by an exponential function. Different types of interactions could be described using this function. It is suggested 
that the joint toxicity of binary mixtures can be assessed with the parameter k∙ECx, which can quickly get very 
important data when planning experiments, but also reduce the number of experiments.   

1. Introduction 

A variety of exogenous substances, such as pharmaceuticals, plasti-
cizers, personal care products, pesticides and so on, are poured into the 
water body, seriously threatening the sustainability of water ecological 
function and human health. A large number of studies have shown that 
the joint toxicity of mixtures to all levels of organisms in water is often 
greater than the sum of the toxicity of single substances (Arrhenius et al., 
2004; Hass et al., 2007). Evaluation of antagonistic or synergistic effects 
between substances is a necessary condition for accurate assessment of 
environmental risk, which has attracted the attention of researchers. 

From the perspective of toxicology, some researchers have analyzed 
the mechanism of action between poisons and receptors, so as to reveal 
the joint toxicity of the mixtures. For example, heavy metal ions can 
bind to the sulfhydryl protein of bacteria to affect the division of bac-
teria. They can also damage the cell wall and photosynthesis of algaes. 
Due to the same target site, most of heavy metal mixtures have syner-
gistic effect at low concentration and antagonistic effect at high 

concentration due to the competition of target site (Wang et al., 2018). 
Tetracycline antibiotics can cause the degradation of SecY in the 
transporter complex, resulting in protein congestion, inhibiting all 
protein secretion and causing cell death (Wu et al., 2010). But for a large 
number of chemical substances, the currently established mechanism of 
action is only the tip of the iceberg. It is more difficult to analyze the 
joint effect of different mechanism substances on organisms. 

Therefore, more and more researchers studied how to predict the 
toxicity of mixtures from the perspective of modeling. Among them, the 
most widely used are two models: the concentration addition model 
(CA) and the independent action model (IA). CA and IA models get 
better prediction results in different situations (Bellas, 2008; Rial et al., 
2013). The two models respectively describe the extreme phenomenon 
of mixture interaction, which may divert from what is true about 
mixture (Kortenkamp et al., 2009). Cedergreen et al. (2008) selected 
158 binary mixtures for toxicity prediction, half of whose toxicity could 
not be well predicted by IA and CA. If the CRCS of individual component 
in the mixtures do not cover the entire range of effects, the CA model will 
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have some predictive blind spots (Liu et al., 2013). 
Consequently, a number of improved IA and CA models emerged. 

Olmstead and LeBlanc (2005) classified the substances according to the 
mechanism of action (MOA). Firstly, the CA model was used to calculate 
the joint toxicity of the substances with similar MOA. Then the IA model 
was used to calculate the joint toxicity of the substances with dissimilar 
MOA. The model is named the Two-Stage Prediction (TSP) which can 
well predict the joint toxicity of mixtures at the environmental con-
centration level. Mwense et al. (2004) adopted molecular descriptors 
and fuzzy set theory to characterize the degree of similarity and 
dissimilarity of mixture constituents and integrated the CA and IA 
models, establishing the Integrated Fuzzy Concentration addition - In-
dependent action Model (INFCIM) which has more accurate prediction 
ability than TSP (Wang et al., 2009). The TSP and INFCIM are poten-
tially ineffective since MOAs of many components are still uncertain. 
Qin et al. (2011) integrated CA with IA based on the multiple linear 
regression model (ICIM) for toxicity prediction of mixtures without 
interaction. This model showed better prediction ability than IA and CA 
models. Ge et al. (2014) have proved that ICIM model can predict the 
toxicity of mixtures that produce interaction, which further expands the 
application scope of the model. Qin et al. (2015) established a linear 
regression CA model (LCA) and a linear regression IA model (LIA), 
which were used to predict the toxicity of mixtures with interaction. Qin 
et al. (2017) further applied LCA and LIA models to the toxicity pre-
diction of mixtures without interaction. Wang et al. (2018) established 
an extended concentration addition model (e-CA) which has better 
predictability than CA. However, the calculation of the above models are 
complex, and their application is far less popular than CA and IA. 

Chemometrics also plays a unique role in the prediction of mixed 
toxicity. The quantitative structure-activity relationship (QSAR) is the 
most common calculation model (Kar and Leszczynski, 2019). Yao et al. 
(2013) predicted the mixed toxicity of different types of binary mixtures 
to P. phosphoreum by molecular docking-based binding energy. Mo et al. 
(2015) used the electronegativity distance vector to describe the mo-
lecular characteristics of 30 organophosphorus compounds and suc-
cessfully predicted the mixed toxicity of the above chemicals to steelhead 
trout. Qin et al. (2018) used genetic algorithm to select the best theo-
retical descriptor, and established a QSAR evaluation model for the 
toxicity of binary and multivariate mixtures of two antibiotics and four 
pesticides to luminescent bacteria Vibrio fischeri. Compared with IA and 
CA models, the prediction accuracy of QSAR model is greatly improved. 
The QSAR model provide strong support for environmental risk assess-
ment of water bodies. However, limited applicability domain and small 
training set restrain the utilization of QSAR, and CA and IA models 
cannot be completely replaced. 

Our previous work found that the parameter k∙ECx of concentration 
response curves (CRCs) could be used as a control index to assess the 
applicability of CA model. This study promoted the development of the 
CA model to the actual prediction model (Wang et al., 2015a). The CRCs 
of substance directly reflects the action relationship between the tested 
organism and the exposed toxicants on a certain toxic endpoint. It may 
be closely related to its mechanism of action. The binary mixtures of five 
different types of substances were studied in the early stage. The binary 
mixtures with the same curve type showed additive effect. Among the 
binary combinations with different curve types, 71.4% of the combi-
nations had synergistic or antagonistic effects (Wang et al., 2018). Dou 
et al. (2010) studied the joint action of binary mixture with J-type and 
S-type CRCs, and found that the mixtures showed antagonistic effect at 
different concentration levels. Brezovšek et al. (2014) studied the toxic 
effects of binary mixtures of antitumor drugs with different CRCs on 
Selenastrum.sp (Chlorophyta) and Synechococcus (Gloeotrichia), and 
found that there were synergistic or antagonistic effects to a large extent. 
It can be concluded that the difference between the shapes of CRCs may 
be the cause of the combination effect of the mixtures. 

In this study, 12 toxic substances of five types commonly detected in 
environment were selected (Yu et al., 2019; Zhang et al., 2015; Cui et al., 

2018; Liu et al., 2015). They include two heavy metals (zinc and cad-
mium), two surfactants (sodium dodecyl benzoate (SDBS) and sodium 
dodecyl sulfate (SDS)), two pesticides (Growth herbicide dicamba (DIC) 
and non-selective herbicide Diquat (DQ)), three antibiotics (tetracycline 
hydrochloride (TC), chloramphenicol (CAP), and polymyxin B (PLB)), 
one clinical medication (Diphenhydramine hydrochloride (DPH)) and 
two ionic liquids (1-butyl-3-methylimidazolium sulfate (IL1) and 
1-dodecyl-3-methylimidazolium chloride (IL2)). The single and binary 
acute toxicity of the 12 chemicals to Vibrio fischeri was tested using the 
microplate toxicity analysis method. Based on the CRCs of substances, 
the characteristic parameters which can characterize the shape of CRCs 
were determined. The combined toxicity of the mixtures was evaluated 
by the deviation between the observed effects and the effects predicted 
by the CA and IA model. The strength of joint action was quantified by 
the relative model deviation ratio (rMDR). Based on the CRCs of 
chemicals, the relationship between the joint toxicity of substances and 
the shape of CRCs was studied, so as to further explore the toxicity 
interaction of mixtures. This study explored the joint toxicity of binary 
mixtures from the perspective of geometric morphology, and provided 
theoretical support for further research of toxicity prediction of multiple 
mixtures. 

2. Materials and methods 

2.1. Chemicals 

Chemcals ZnSO4∙7H2O (CAS 7446-20-0, analytical grade), 
CdCl2∙2.5H2O (CAS 7790-78-5, analytical grade), chloramphenicol 
(CAP, CAS 56-75-7, ＞98% purity) and diphenhydramine hydrochloride 
(DPH, CAS 147-24-0, ＞98% purity) were purchased from sigma-Aldrich 
(Shanghai, China). Tetracycline hydrochloride (TC, CAS 64-75-5, ＞ 
98.0% purity), sodium dodecylbenzene sulfonate (SDBS, CAS 25155-30- 
0, ＞95.0% purity) and sodium lauryl sulfate (SDS, CAS 151-21-3, ＞ 
97.0% purity) were purchased from TCI (Japan). Diquat (DQ, CAS 85- 
00-7, standards 93.4% purity) and dicamba (DIC, CAS 1918-00-9, 
standards 99% purity) were purchased from DR (Germany). 1- 
dodecyl-3-methylimidazolium chloride (IL2, CAS 114569-84-5, 99% 
purity) were purchased from Energy Chemical (China). 1- butyl-3- 
methylimidazocine sulfate (IL1, CAS 445473-58-5, 99% purity) were 
purchased from Alfa (USA). Polymyxin B Sulfate (PLB, CAS 1405-20-5, 
95% purity) were purchased from TRC (Canada). The stock solution 
was prepared by dissolving in Milli-Q water and stored in the dark at 
4 ◦C. Some physical properties are listed in Table 1. The structures of the 
ten organic chemicals are illustrated in Fig. S1. 

2.2. Experimental design and toxicity test 

The marine bacterium Vibrio fischeri (V. fischeri) used in the lumi-
nescent bacteria toxicity tests was purchased in a freeze-dried form from 
the China Center. The luminescence inhibition of twelve single chemical 
and their binary mixtures were tested using the Centrol IApc LB960 
Microplate Luminometer (Berthold Technologies Company, Germany). 
The concentration ratios of each of chemical in mixtures are the pro-
portions of EC50 to the total concentration (Cmix) of the mixture. To 
construct the CRC of a mixture, 12different test concentrations in 3 
parallels and 12 controls in a 96-well microplate were arranged, and the 
microplate test was repeated three times. The samples were exposured 
for 15 min. The details of the V. fischeri and toxicity test methods were 
performed as described in previous work of our research group (Ma 
et al., 2019). All the acute biological toxicity tests were carried out three 
times with different batches of bacterial suspensions. The deviation of 
three test results should be less than 10%. 

The acute toxicity of the sample was evaluated as the inhibition 
value: 

I = [(R0 − R)/R0] × 100% (1) 
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where I: the inhibition value; R and R0: the average relative lumines-
cence unit (RLU) values of the samples and the controls, respectively, 
after 15 min exposure. The toxicity tests were repeated three times. 

The binary mixtures were a series of equal toxicity solutions (ETS) 
(Tan et al., 2011) prepared following the classical empirical approach 
with concentration levels as EC50, where EC50 denotes the effective 
concentration corresponding to an inhibition value of 50% for individ-
ual chemicals. A total of 66 binary mixture rays composed of twelve 
toxicants referred were designed. 

2.3. Concentration response curve fitting 

The experimental data were mathematically manipulated to obtain 
the CRCs for each individual chemical and the binary mixtures by non- 
linear least square (NLLS) calculation. As all the data sets were found to 
fit well with the Hill function, the following equation was used as a 
mathematical expression of the CRCs: 

I = a × cn/(bn + cn) (2)  

where c (mg/L): the mass concentration, I (%): the inhibition as a 
response to c, a (%): the effect corresponding to the infinite concentra-
tion, b (mg/L): the concentration when the effect is a/2, n (non- 
dimensional): the parameter representing slope. The 95% confidence 
intervals (CI) of CRCs were calculated to describe experimental error 
and fitting uncertainty (Liu et al., 2009). 

The following equation was the derivative of the Hill function that is 
used to calculate slope k of the CRCs: 

k = I
′

=
nabncn− 1

(cn + bn)
2 (3)  

2.4. The parameter k∙ECx of the CRCs 

The detailed derivation process of the parameter k∙ECx of the ma-
terial CRCs is shown in the previous literature published by our research 
group (Wang et al., 2015). This paper only introduces the calculation 
process of characteristic parameters. It is known from the literature that: 
ci

ECx
= 1 −

x − xi

k⋅ECx
(4)  

where (ci, xi), (ECx, x) are two coordinate points on a CRC, k is the slope 
of the line which goes through the point (ci, xi) and (ECx, x). It is 
approximately equal to the derivative of the concentration response 
function at the point (ECx, x) when the point (ci, xi) is close to the point 
(ECx, x). Any CRC fitting function has derivative function, such as the 
Logit and Weibull in some papers. In this paper, the derivative function 
of Hill equation is specially referred to, as shown in Eq. (3). The left side 
of Eq. (4) is the expression of CA model, and its value is directly 

proportional to the value of parameter k∙ECx. CA model is the most 
widely used at present to evaluate the joint action of mixtures, so the 
parameter k∙ECx is the characteristic parameter to characterize the 
CRCs of substance. 

2.5. Toxicity interaction evaluation 

The toxicological interaction in the mixture was identified by using 
the CA, IA. If the toxicity predicted by CA/IA is higher than the upper 
95% CI or lower than the lower 95% CI of observed toxicity, it is deemed 
to be antagonistic or synergistic, respectively. If the toxicity predicted by 
CA/IA is located between the CIs, it is considered to be additive (Chen 
et al., 2019). The mathematical equations of the CA model are Eqs. (5) 
and (6) (Altenburger et al., 2004). The strength of joint action was 
quantified by the relative model deviation ratio (rMDR) (Belden et al., 
2007): 

ECx,mix =

(
∑n

i=1

pi

ECx,i

)− 1

(5)  

∑n

i=1

ci

ECxi
= 1 (6)  

where ECx,mix represents the mixture concentration that provokes x% 
joint effect, ECx,i is the concentration of the ith component that provokes 
x% effect when applied individually, and pi refers to the ratio of the 
concentration of the ith component (ci) in the mixture to the total 
mixture concentration (cmix). 

The mathematical equation of the IA model is as follows: 

E
(
Cx,mix

)
= 1 −

∏n

i=1
(1 − E(ci)) (7)  

where E(Cmix) refers to the total effect of the mixture, and E(ci) denotes 
the effect of the ith component with a concentration of ci in the mixture. 

The mathematical equation of the rMDR model is as follows: 

rMDRx =
ECx,pr − ECx, iob

ECx,ob
× 100% (8)  

where rMDRx refers to the strength of joint action, and ECx,pr refers to the 
concentration that provokes x% of predicted value of CA or IA, ECx, ob 
refers to the expected value of observed concentration that provokes x%. 
The values of 95% CI calculated by using inverse Hill function were 
applied in rMDRx and denoted as rMDRx,up and rMDR x,low (Chen et al., 
2019). When the rMDR x,low≤rMDR x≤rMDR x,up, the joint action is ad-
ditive; when the rMDR x=rMDR x,up> 0, the joint action is synergetic; 
when the rMDR x=rMDR x,low< 0, the joint action is antagonistic. 
|rMDRx| is the strength of joint action. 

Table 1 
The statistic parameters of fitting function, EC50, and stock of twelve selected chemicals.  

Chemicals / Ion Abbr. M.W. a b n Adj.R2 Red.Chi-S EC50 （mg/L） Stock （mg/L） 

Zn2+ Zn2+ 65.39  98.45  0.5  4.91  0.9976  3.83  0.50±0.02  10 
Cd2+ Cd2+ 112.41  98.08  1.6  6.50  0.9909  9.57  1.61±0.03  10 
Sodium dodecylbenzene sulfonate SDBS  348.48  121.82  55.05  5.31  0.9899  12.09  51.46±0.96  150 
sodium lauryl sulfate SDS  288.38  160.19  125.55  1.10  0.9867  12.71  61.23±5.12  1000 
Diquat DQ  344.05  111.45  627.40  3.12  0.9893  12.31  587.18±20.25  2500 
Dicamba DIC  221.04  110.26  84.04  4.06  0.9919  10.48  80.25±5.34  1000 
Chloramphenicol CAP  323.13  126.44  676.42  1.18  0.9892  6.95  454.01±17.33  2500 
Tetracycline hydrochloride TC  480.90  89.39  78.78  4.81  0.9957  4.67  82.81±5.99  1000 
Polymyxin B Sulfate PLB  1301.56  79.87  2.37  2.28  0.9957  2.80  3.03±0.05  100 
Diphenhydramine hydrochloride DPH  291.82  163.52  650.50  1.19  0.9901  8.37  328.46±14.72  1500 
1- butyl-3-methylimidazocine sulfate IL1  348.5  101.89  510.56  1.92  0.9964  4.12  500.68±20.54  5000 
1-dodecyl-3-methylimidazolium chloride IL2  286.88  103.10  1.32  3.72  0.9901  14.69  1.28±0.03  10 

M.W is molecular weight; a, b and n are parameter of Hill function; Adj.R2 is adjusted correlation coefficient squared; Red.Chi-S is the reduced chi-squared test; EC50 is 
50%-effect concentration and its 95% confidence interval. 
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2.6. Fitting the relationship between ∆(k∙ECx)% and the strength of joint 
action 

The relationship between the percentage of relative difference of 
characteristic parameter k∙ECx (∆(k∙ECx)%) and the strength of joint 
action was also fitted by non-linear least square method and Origin Pro 
8.5 (OriginLab, North-ampton, MA, USA). 66 mixtures data can be well 
fitted by exponential function. The following equation was the mathe-
matical expression of the exponential function: 

rMDRx = A+BeRo⋅Δ(k⋅ECx)% (9)  

Δ(k⋅ECx) % =
(k⋅ECx)1 − (k⋅ECx)2

(k⋅ECx)1
× 100% (10)  

where k is the slope of CRCs at the concentration of ECx, (k∙ECx)1 refers 
to the characteristic parameter of CRCs for component 1 of binary 
mixture when the concentration is ECx, (k∙ECx)2 refers to the charac-
teristic parameter of CRC for component 2 of binary mixture when the 
concentration is ECx, A (%), B (Dimensionless), R0 (Dimensionless) re-
fers to the fitting parameters of exponential function, and rMDRx refers 
to the strength of joint action corresponding to x% effect of binary 
mixture. 

The principle of defining substance 1 and substance 2 is as follows: 
the parameter ∆(k∙ECx)% calculated according to Eq. (10) increases 
from ∆(k∙EC5)% to ∆(k∙EC95)%. The purpose of this is that: Fig. 2, 
drawn according to Eq. (9), shows the change of the joint action of the 
binary mixtures (the rMDRx) from low to high concentration. |Δ(k⋅ECx)

%| measures the difference in the shape of CRCs between components of 
binary mixtures. The positive or negative change of ∆(k∙ECx)% in-
dicates the change in the trend of CRC of substance 1 and substance 2. 

3. Results and discussion 

3.1. The CRCs of individual chemicals selected 

The Hill function (Eq. (3)) was used to fitting the CRCs of the twelve 
chemicals towards V. fischeri. Table 1 lists the relevant parameters of 
fitting results for the selected individual chemicals. As all the Adj.R2 

values were higher than 0.98 and the Red.Chi-S values were lower than 
15, it could be concluded that the experimental data were well fitted by 
the Hill function. According to the mass concentrations corresponding to 
EC50 to evaluate the toxicity, the most toxic chemical is Zn2+ and the 
least toxic chemical is Diquat (DQ). The toxicity order of the selected 
chemicals is Zn2+ > 1-dodecyl-3-methylimidazolium chloride (IL2) >
Cd2+ > Polymyxin B Sulfate (PLB) > Sodium dodecylbenzene sulfonate 
(SDBS) > sodium lauryl sulfate (SDS) > Dicamba (DIC) > Tetracycline 
hydrochloride (TC) > Diphenhydramine hydrochloride (DPH) >

Chloramphenicol (CAP) >1- butyl-3-methylimidazocine sulfate (IL1) >
Diquat (DQ). Among them, the acute toxicity of heavy metals to 
V. fischeri is the highest. The toxicity of ionic liquids varies greatly. The 
toxicity of IL2 is 391 times that of IL1. Both of them are methyl imid-
azole ionic liquids, and their toxicity depends on the characteristics of 
substituents, which was also found in early studies (Diaz et al., 2018). 
The toxicity of the two surfactants was not significantly different. The 
acute toxicity of SDBS is 1.19 times that of SDS, indicating that the 
toxicity of substituted benzenesulfonic group is slightly higher than that 
of sulfato group. Among the three antibiotics, PLB exhibits the strongest 
biological toxicity, with EC50 of 3.03 mg/L, which is 27.3 times and 
149.8 times the toxicity of TC and CAP, respectively. This result is 
consistent with PLB as the last resort to deal with bacteria (Zhan et al., 
2019). DQ and DIC show weak acute toxicity to bacteria. However, the 
toxicity of selective herbicide (DICIC) to V. fischeri is 6.3 times higher 
than that of non-selective herbicide (DQ). The twelve CRCs of the 
selected chemicals are plotted in Fig. S2. The value of parameter n re-
flects the trend of the curves to a certain extent. The larger the value of n 

(such as Zn2+, Cd2+, SDBS, DQ, DIC, IL2, TC, the value of n varying from 
3.12 to 6.50), the greater the slope of the middle section of the curve. 
While the values of n (such as SDS, IL1, DPH, CAP, PLB) are all close to 1, 
so the slopes in the middle of these curves are close to each other. 

3.2. Characteristic parameter k∙ECx for characterizing the shape of CRCs 

The parameters k∙ECx of 12 selected reference materials are listed in  
Table 2. It can be seen from Table 2 that the k∙ECx of CRCs for 12 
substances are quite different. Taking k∙EC50 as an example, the 
parameter of Cd2+ is 159.4, while that of CAP is 36.3. The k∙EC50 of 
Cd2+ is 4.4 times as much as that of CAP. The k∙ECx of the same sub-
stance also varies greatly in the whole concentration range. Taking SDBS 
as an example, its k∙EC5 is 25.4, and k∙EC60 is 161.3, the difference 
between them being 5.4 times. According to Table 1 and Table 2, the 
variation trend of fitting parameter n of the dose-effect equation is Cd2+

> SDBS > Zn2+ > TC > DIC > IL2 > DQ > PLB > IL1 > DPH > CAP 
> SDS, and the variation trend of parameter k∙EC50 is Cd2+ > SDBS 
> Zn2+ > DIC > TC > IL2 > DQ > IL1 > PLB > DPH > SDS > CAP. The 
order of the two is basically the same, with slight changes in some parts. 
It can be seen from Section 3.1 that the value of n is related to the shape 
of CRCs to a certain extent, so k∙ECx is also a characteristic parameter 
that can characterize the shape of CRCs. The k∙ECx has its exact value 
corresponding to different concentrations, so it can better reflect the 
morphological trend of CRCs in the entire concentration interval. 
Among the 12 substances, CAP, DPH and SDS have similar k∙ECx, Zn2+

and TC have similar k∙ECx, indicating that their dose-effect curves have 
similar curve trends; otherwise, the curve trends are different. 

3.3. The joint toxic effects of binary mixtures 

The acute toxicity of 66 equal toxicity binary mixtures to V. fischeri 
was determined by microplate test. The CRCs of all binary mixtures can 
be well fitted by Hill equation. The fitting information of acute toxicity 
of binary mixtures is detailed in Table S1, including mixture concen-
tration ratio, fitting parameters, Adj.R2 and Red.Chi-S. All the Adj.R2 

values are greater than 0.98, the Red.Chi -S values are less than 13. The 
CA and IA models were used to evaluate the joint effects. The CRCs of 
binary mixtures were compared with IA CRCs, CA CRCs to determine the 
joint action of binary mixtures. The joint action analysis of the whole 
concentration range of binary mixtures is shown in Fig. 1 and Fig. S3. It 
can be seen from Fig. 1 and Fig. S3 that the measured CRCs of 43 binary 
mixtures deviated significantly from the predicted CRCs of IA and CA, 
resulting in strong antagonistic or synergistic effects. 65% of the mix-
tures have interactions, which further verifies the previous research 
results of our research group, and the binary mixtures with different 
shape of CRCs are easy to produce interactions (Wang et al., 2018). 

3.4. Toxicity evaluation using CA and IA models 

It can be seen from Fig. 1 and Fig. S3 that the evaluation results of IA 
and CA on the joint action of binary mixtures are quite different. The CA 
model is applied under the assumption that mixture components have 
the same or similar MOA (Loewe, 1926), whereas IA is utilized under the 
assumption that mixture components have different MOA (Bliss, 1939). 
The 12 environmental chemicals selected in this paper have different 
sources, different chemical structures and different MOA on V. fischeri. 
The CRCs of the selected substances were quite different (parameter 
k∙EC50 varying from 37.8 to 159.4). When the shape of CRCs of sub-
stances is quite different, CA will bring huge error to evaluate the joint 
effect (Wang et al., 2015). Since the maximum inhibition rate of PLB is 
only 70%, there will be a prediction blind area when CA model is used to 
evaluate the binary mixtures containing PLB (Liu et al., 2013). There-
fore, the IA model is selected as the evaluation model of binary mixtures 
in the following sections. 

The strength of the joint action was assessed by the deviation 
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between the measured value and the predicted value of IA. It can be seen 
from Fig. 1 that the deviation degree between of the IA CRCs and 
measured CRCs has been changing in the whole concentration range, 
indicating that the joint action strength of mixtures has been changing. 
For example, SDS+DIC showed obvious synergistic effect in low con-
centration region (≤ EC40), additive effect in medium concentration 
ranges (EC40~EC60) and antagonism in high concentration region. The 
Cd2++DPH showed slight synergism in the low concentration region (<
EC20), additive effect in the medium and high concentration region (>
EC20). The changes of the interaction mode were reflected in 28 mix-
tures, such as Zn2++CAP, Zn2++SDBS, Cd2++PLB, SDBS+DPH, DQ+IL1 
etc. In order to obtain the joint action strength of binary mixtures in the 
whole concentration range, EC10 and EC20 were selected as represen-
tatives of low concentration range, EC50 of medium concentration range, 
and EC70 of high concentration range (Chen et al., 2019). Based on the 
prediction results of IA, the strength of joint actions at four represen-
tative concentrations was calculated by rMDR model, as shown in 
Table S2. According to Table 2 and Table S2, The characteristic pa-
rameters of components in the three groups of Zn2++TC, CAP+DPH and 
CAP+SDS are similar, and their joint action is additive. It is further 
verified that the substances with similar CRCs have additive effect 
(Wang et al., 2018). The DPH+SDS combination with similar charac-
teristic parameters appears abnormal phenomenon. The low concen-
tration of DPH+SDS is the additive effect, and the high concentration 
shows more than 50% synergistic effect. This is directly related to the 
white emulsion of the mixture in the medium and high concentration 
ranges in the experiment, which affects the experimental results. The 11 
mixtures with a joint effect greater than 50% are: Zn2++Cd2+, 
Zn2++DQ, Zn2++IL2, Cd2++DQ, Cd2++DIC, SDBS+DPH, SDBS+PLB, 
CAP+IL2, DIC+PLB, IL1+IL2 and IL1+PLB, and the ∆(k∙EC50)% of 
mixtures are: 142.2%, 41.2%, 34.4%, 99.8%, 95.7%, 45.1%, 80.6%, 
80.1%, 56.9%,79.9%, and 51.5%. 

3.5. The relationship between the joint action of binary mixtures and ∆ 
(k∙ECx)% 

The relationship between the ∆(k∙ECx)% and the rMDRx of each 
mixture was fitted according to the method described in Section 2.6. The 
results show that the relationship of them can be well fitted by expo-
nential function (Equ. 9). All the Adj.R2 values were higher than 0.94. 
The Red.Chi-S values were lower than 100, except for 303 for the 
DQ+TC. The fitting equation is shown in Table S3, and the fitting curves 
are shown in Fig. 2 which includes Figs. 2.1–2.4. 

Fig. 2 shows the relationship between ∆(k∙ECx)% and the rMDRx of 
binary mixtures from low concentration to high concentration. As |Δ(k⋅ 
ECx)%| increases, |rMDRx| also increases, and the function is identified 
as an increasing function; on the contrary, as |Δ(k⋅ECx)%| increases, 
|rMDRx|decreases, and the function is identified as a decreasing func-
tion. To facilitate curve analysis, auxiliary dotted lines rMDRx= 0 and ∆ 
(k∙ECx)%= 0 were drawn respectively. For example, the PLB+DPH: 
rMDRx varied from − 40–0, that is, the antagonistic strength varied from 

0% to 40%. The exponential function is divided into two sections by ∆ 
(k∙ECx)%= 0. In the interval [- 100, 0], with the decrease of 
|Δ(k⋅ECx)%|, the antagonistic strength increased from 0% to 32%, which 
was a decreasing function. In the interval [0,80], with the increase of 
|Δ(k⋅ECx)%| from 0% to 80%, the antagonistic strength increased from 
32% to 46%, which was an increasing function. 

There are 21 mixtures which CRCs trend changes (∆(k∙ECx)% 
> 0 and ∆(k∙ECx)% < 0) in the whole concentration range. 12 of them 
change the mode of joint action (both antagonistic and synergistic ef-
fects existed) and were named a1, as shown in Fig. 2.1. In a1 type, all of 
them are non-monotonic functions, and the intersection of dotted line 
rMDRx= 0 and ∆(k∙ECx)%= 0 with exponential function does not 
coincide. But the mixture concentration corresponding to the intersec-
tion point of the dotted line rMDRx= 0 and the exponential function is 
lower (10 groups are consistent with this situation). In other words, the 
change of the joint action mode of the mixture is much earlier than the 
change of shape of the component CRCs. An interesting phenomenon is 
found: whether the joint action is antagonistic or synergetic, the func-
tion is divided into three segments by two intersections of the dotted line 
rMDRx = 0 or ∆(k∙ECx)% = 0 with the exponential function dividing the 
function into three sections, from low concentration to high concen-
tration – increasing function, decreasing function, increasing function 
respectively (except for IL2+DQ, the function value of high concentra-
tion region is unchanged). That is to say, with the increase of 
|Δ(k⋅ECx)%|, the strength of joint actions first increases, then decreases, 
and finally increases. 

Fig. 2.2 shows the relationship between ∆(k∙ECx)% and the rMDRx of 
9 mixtures named type a2 (only antagonistic or synergistic action). In a2 
type, there are 2 groups of increasing functions and 3 groups of 
decreasing functions (all synergetic), and 4 groups of non-monotonic 
function. In 4 groups of non-monotonic functions, the dotted line ∆ 
(k∙ECx)% = 0 divides the exponential function into two segments. When 
the joint action was antagonistic, from low concentration to high con-
centration they are decreasing function and increasing function 
respectively. That is to say, with the increase of |Δ(k⋅ECx)%|, the strength 
of joint actions first decreases and then increases. While the joint action 
is synergetic, exactly the opposite, i.e. with the increase of |Δ(k⋅ECx)%|, 
the strength of joint action first increases and then decreases. 

There are 45 mixtures which CRCs trend doesn’t change (∆(k∙ECx)% 
> 0 or ∆(k∙ECx)% < 0) in the whole concentration range. 19 of them 
change the mode of joint action and were named b1, as shown in Fig. 2.3. 
In b1 type, they are all non-monotonic functions, and the dotted line 
rMDRx= 0 divides the exponential function into two sections. When ∆ 
(k∙ECx)% > 0, from low concentration to high concentration they are 
decreasing function and increasing function. That is to say, with the 
increase of ∆(k∙ECx)%, the strength of joint action first decreases and 
then increases. When ∆(k∙ECx)% < 0, the trend is exactly the opposite. 
That is to say, with the increase of |Δ(k⋅ECx)%|, the strength of joint 
action first increases and then decreases. This law has nothing to do with 
the joint action mode of the mixture. 

The other 26 mixtures don’t change the mode of joint action and 

Table 2 
The characteristic parameter k∙ECx of CRCs for the selected individual chemicals.  

Chemicals k·EC5 k·EC10 k·EC20 k·EC30 k·EC40 k·EC50 k·EC60 k·EC70 k·EC80 k·EC90 

Zn2+ 23.3  44.0  78.1  102.2  116.4  120.6  114.9  99.2 73.6 38.1 
Cd2+ 30.8  58.4  103.5  135.4  154.0  159.4  151.5  130.3 95.9 48.3 
SDBS  25.4  48.6  88.6  119.8  142.4  156.2  161.3  157.8 145.5 124.5 
CAP  5.8  11.1  20.2  27.5  32.8  36.3  37.8  37.5 35.2 31.1 
DPH  5.8  11.3  21.1  29.4  36.3  41.7  45.6  48.0 49.0 48.6 
DQ  14.8  28.3  51.2  68.6  80.7  87.3  88.5  84.3 74.7 59.7 
DIC  19.6  37.3  67.1  89.5  104.5  112.1  112.2  104.9 90.1 67.9 
TC  22.7  42.6  74.5  95.7  106.1  105.8  94.7  72.9 40.4 / 
SDS  5.3  10.3  19.3  26.8  33.0  37.8  41.3  43.4 44.1 43.4 
IL1  9.0  17.1  30.5  40.2  46.2  48.4  46.9  41.6 32.7 20.0 
IL2  17.6  33.4  59.6  78.7  90.6  95.3  92.8  83.2 66.3 42.3 
PLB  10.8  20.1  34.4  42.9  45.6  42.5  33.6  18.9 / /  
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were named b2, as shown in Fig. 2.4. In b2 type, they are all monotone 
function. Among them, 14 groups show synergistic action (7 groups of 
increasing function and 7 groups of decreasing function) and 12 groups 
of antagonistic action (7 groups of increasing function and 5 groups of 
decreasing function). In this case, the probability of the mixtures pro-
ducing antagonism or synergism is close, and the probability of the 
antagonism or synergism presenting an increasing function is close to 
that of a decreasing function. 

∆ (k∙ECx)% can be directly obtained from the dose-response equa-
tion of the substances, and with a few toxicity test data of low, medium 
and high concentrations, the joint toxicity of binary mixtures in the 
whole concentration range can be predicted. 

4. Conclusions 

The single and binary acute toxicity of 12 kinds of environmental 
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pollutants from different sources to Vibrio fischeri was tested by micro-
plate assay. The toxicity order of the twelve tested substances was Zn2+

> IL2 > Cd2+ > PLB > SDBS > SDS > DIC > TC > DPH > CAP 
> IL1 > DQ. The parameter n of the fitting equation varies from 3.12 to 
6.50, which indicates that the CRCs shapes of the tested substance are 
quite different. The change order of characteristic parameter k∙ECx is 
basically the same as that of parameter n, and it can describe the shape of 
CRCs in the whole concentration range in detail. 

The toxicity of 66 binary mixtures was analyzed by CA and IA 
models, 65% of the mixtures produced strong antagonism or synergism 
effects. According to the experimental results and the analysis of related 
literature, IA model is the best model to predict the joint action of binary 
mixtures among the two models. EC10, EC20, EC50, EC70 were selected as 
representative concentrations, and IA model and modified rMDR model 
were used to evaluate the strength of joint effect for binary mixtures. It is 
found that Zn2++TC, CAP+DPH, CAP+SDS with similar k∙ECx all show 
additive effect. The ∆(k∙ECx)% of mixtures whose average joint action 

strength is greater than 50% at four representative concentrations are 
greater than 34.4%. The difference of k∙ECx of each component in the 
mixture is the cause of joint action. The exponential function can well 
characterize the relationship between ∆(k∙ECx)% and rMDRx. 

By analyzing the fitting curve of rMDRx and ∆(k∙ECx)%, it is found 
that: (1) For a1 type binary mixtures, the change of joint action mode is 
earlier than the change of CRCs shape. With the increase of |Δ(k⋅ECx)%|, 
the strength of joint action first increases, then decreases and then in-
creases, which is not related to the mode of joint action. (2) For a2 type 
binary mixtures, when the fitting exponential functions are monotonic, 
the interaction is likely to be synergistic. When the fitting exponential 
functions are non-monotonic and the joint action is antagonistic, with 
the increase of |Δ(k⋅ECx)%|, the strength of joint action first decreases 
and then increases. When the joint action is synergetic, the trend is 
exactly the opposite. (3) For b1 type binary mixtures, when ∆(k∙ECx)% 
> 0, with the increase of ∆(k∙ECx)%, the joint action strength first de-
creases and then increases. When ∆(k∙ECx)% < 0, with the increase of 

Fig. 2.3. The fitting curves of ∆(k∙ECx)% and rMDRx (b1 type). The black dots (•): Experimental value; the red solid lines (—): Exponential model fit.: increasing 
function,: decreasing function. b1: ∆(k∙ECx)%＞0 or ∆(k∙ECx)%＜0, rMDRx＞0 and rMDRx＜0. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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|Δ(k⋅ECx)%|, the trend is exactly the opposite. This rule is applicable to 
both antagonistic and synergistic effects. (4) For b2 type binary mix-
tures, the fitting exponential functions are all monotone functions and 
the probability of increasing and decreasing functions is similar, 
regardless of the mode of action. 

This study reveals the relationship between the joint toxicity (mode 
and strength) of binary mixtures and the shape of CRCs of components, 
and obtains the variation rule of joint toxicity with parameter ∆ 
(k∙ECx)%. Following the rule, very important data can be obtained in 
the individual toxicity experiment, and the joint toxicity of binary 
mixture can be predicted to a certain extent. It provides theoretical 
support for the prediction of joint effects of mixtures from the view of 
geometry. The applicability of this rule in binary mixtures with different 
concentration ratios and multicomponent mixtures is also a topic for the 
future study. 
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